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LETTER TO THE EDITOR 

Onset of ‘super retrieval phase’ and enhancement of the 
storage capacity in neural networks of non-monotonic 
neurons 
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t Department of Applied Physics, Tokyo Institute of Technology, Ohokayama, 
Meguro-ku, Tokyo, Japan 
#Department of Electronics, Tokai University, Kitakaname~ 1117, Hiratsuka-shi, 
Kanagawa, Japan 

Received 10 February 1993 

Abstract. Analogue neural networks of associative memory with continuous time dyna- 
mics are studied for non-monotonic transfer functions using the methodof self-consistent 
signal-to-noise analysis. The Hebb learning rule with unbiased random patterns is 
assumed for the synaptic couplin~s. A novel phenomenon is found to occur as a result of a 
phase transition concerning the property of the local field distribution. In retrieval states 
of the newly found phase which we refer to as the super retrieval phase, noise in the local 
fields vanishes and the memory rem’evd without errors ensues even for an extensive 
number of memory patterns stored under the local leaming rule. Tbe storage capacity is 
obtained as a function of the parameter representing the degree of non-monotonicity of 
the transfer functions, with the result that an enhancement of the storage capacity can also 
occur. 

Theory of associative memory neural networks with symmetric synaptic interactions 
[l-41 has made great progress amidst an intense effort by researchers to understand 
the collective behaviour of systems of interconnected neurons on the basis of 
statistical neurodynamics [5-10] and statistical mechanics of phase transitions in spin 
glasses 111-151. Statistical mechanics makes full use of the existence of an energy 
function which not only plays the role of a Lyapunov function ensuring stability of the 
network system, but also allows an equilibrium distribution of the Gibbs type. 

Analogue neural networks with deterministic continuous-time dynamics [4,16-231 
which are characterized by transfer functions representing input-output relations of 
graded-response neurons do not always satisfy the condition for the existence of an 
energy function and thus are, in general, expected to give rise to a variety of 
behaviours including rich dynamical phenomena. When a transfer function is monoto- 
nically increasing as in the sigmoidal one, which is often assumed in the study of 
associative memory models of neural networks, an energy function is allowed to exist 
for the case of symmetric synaptic interactions and enables one to analyse the storage 

0305-4470/93/170%31+ 11 $07.50 0 1993 IOP Publishing Ltd L831 



L832 Letter to the Editor 

capacity using a statistical mechanical approach [16,18,19]. For instance, in the case 
of the hyperbolic-tangent transfer function the behaviour of the storage capacity with 
change in the analogue gain was shown [16,18,19] to be qualitatively the same as that 
of a stochastic network of formal two-state neurons, i.e. Ising spin neurons, with 
change in the inverse temperature. If, on the other hand, the restriction of the 
monotonicity of the transfer functions is removed, one can easily see that the network 
has no longer a Lyapunov function even when it works as an associative memory. 

One may be allowed to consider effective transfer functions that describe overall 
input-output relations of possible local clusters of neurons serving as functional units 
in the information processing of physiological nervous systems. Such effective transfer 
functions will take a variety of shapes and happen to exhibit non-monotonic behav- 
iour. 

The self-consistent signal-to-noise analysis (SCSNA) [22] we have recently deve- 
loped is applicable to analogue networks with arbitrary transfer functions [23]. So the 
method is powerful particularly for networks without Lyapunov functions, such as the 
networks having non-monotonic. transfer functions, since it substantially assumes 
nothing but the existence of tixed point type attractors for the dynamics of the 
networks. The SCSNA properly takes into account the correlation between components 
of the non-condensed patterns and the output of a neuron in the retrieval state with 
respect to the condensed pattern, and self-consistently splits the local field into three 
parts by means of a kind of renormalization procedure; signal, pure noise, and output 
proportional terms 1221. One of the characteristic features of the SCSNA is a clear cut 
explanation, based on the role of the output proportional term, for a non-Gaussian 
distribution of the local fields which manifests itself in a pronounced manner in the 
case of non-monotonic transfer functions. 

The aim of the present letter is to report the results of the SCSNA applied to a 
continuous-time analogue network with a certain type of non-monotonic transfer 
function, which shows not only an enhancement of the storage capacity but also the 
remarkable phenomenon of the onset of ‘super retrieval phase’ associated with a non- 
Gaussian property of the local field distribution. 

The super retrieval phase refers to a phase where noise in the local fields of 
neurons in the retrieval states vanishes even with an extensive number of stored 
patterns. It has, to date, been believed that networks which store an extensive number 
of patterns through local learning rules cannot be free from a finite fraction of errors 
in their retrieval states, which increase as loading rate is increased [13]. In the non- 
local learning rule such as the pseudo-inverse rule, on the othex hand, perfect memory 
recall with extensively many patterns has been shown to be possible as a result of the 
vanishing of noise in the local fields of neurons [24]. 

The novel phase found in the present network having non-monotonic transfer 
functions appears due to a phase transition in which the width of the local field 
distribution for the retrieval state implied by the SCSNA-order parameter equations 
approaches 0 at a certain critical value a. as the loading rate a is decreased. Below the 
critical value, the standard type of retrieval state with finite width of the local field 
distribution cannot exist any more and a different type of retrieval state with the 
vanishing noise comes into existence. The occurrence of such retrieval states implies 
that memory retrieval without errors ensues even in the case of the local learning rule 
of the Hebb type. 

We begin by presenting the model network of non-monotonic analogue neurons 
together with a brief outline of the SCSNA, the original version of which was given in 
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=U----- Figure 1. Transfer function representing input-output relation of a neuron. 

[ZZ]; its reformulated version elucidating the self-consistent character of the method 
has been detailed in [WJ. 

The time evolution of the network of N neurons is assumed to be given by 

(1) 

with U; representing membrane potential of neuron i and Ji, synaptic connections with 
the Hebb leaming rule 

l P  
N (2) .Ifi= - 2 tyltp) 

# = I  
J,i=Q 

where {@)} (.U =.I, . . . , p ,  i= 1, . . . , N) denote p sets of uncorrelated random pat- 
terns with Pr{ty)=+l}=+. 

We deal with the transfer function F specified with the two parameters B and p as 
shown in figure I: 

which is non-monotonic when p <  1. The case of p = O  has been studied in great detail 
elsewhere [W] to observe the effect of cutting off output activity of neurons on the 
behaviour of the storage capacity. Decreasing 0 below .9= 1 has been found to yield 
the onset of super retrieval phase for a< ao(B) as well as an appreciable enhancement 
of the storage capacity. In the present paper we want to confine ourselves to studying 
the effect of changing the other parameter p which can be considered to control the 
degree of non-monotonicity of the transfer function. 

Assuming the existence of equilibrium solutions to (l), we will be concerned with a 
set of equations 

xi = F( J ; , X ~ )  i = l ,  . . . . N (4) 
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for output of neurons (xi-F(ui)) to obtain the retrieval solution with respect to 
pattern 1 of the form 

with mu) standing for the order-parameter overlaps 
m(l) = O(1) m @ ) = ~ ( ~ / f i )  f o r p a 2  (5) 

The SCSNA extracts pure noise part in the local field hi of neuron i which is written 
as 

by assuming the decomposition [E] 

where q represents pure noise. The spirit of the SCSNA is in the self-consistent 
determination of and y [22,25]. We note that the so-called conventional treatment 
implies y=a,  giving rise to 0 mean of the naive noise 

in which we refer to rx; as the output proportional term. After some manipulations for 
the renormalization procedure presented in [22,25], it follows that y is given as 

and the noise is almost independent of p and i, obeying an identical Gaussian 
distribution with mean U and variance U', where U and U are self-consistently 
determined by [22,25] 

U= ((2)) 
with xi being given by the solution of (9) and (( )) representing average over ti1) and 
Gaussian noise q. Equations (12) and (13) together with the one for the pattern 
overlap m"' 

m(')= (($ki)) (14) 
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constitute a fundamental set of equations for the SCSNA. 
Since the transfer function (3) is odd (F( -U)=  -F(u)), taking average over E$') 

turns out to be equivalent to simply setting e(*'= 1 in the above equations. Further 
setting u2= ar together with z = i / a  one can rewrite the set of equations in a more 
familiar form [22,25]: 

where the renormalized output Y(z) is given by solving the equation: 

Y(z) = F(m + V'& z + rY(z)) (154 
with r= a(CU1- U). Since the above equation with F given by (3)  admits more than 
one solution, we have to resort to use of the Maxwell rule to pick up the available 
solution. Note that the application of the rule can be ensured in the case of monotonic 
transfer functions within the context'of the saddle point method of replica symmetric 
theory [16]. 

The resultant Y can take several different types of shape as a function of z 
according to the value of r, which is determined by solving (15). We depict one of 
them obtained for the case of -(ZO/l-p)<r<O which covers a wide region of 
parameter space of interest: 

- m - 6  
~~ (z*<z<z3)  r Y(2) = -p(z<z,) Y(z)= - l(z,<z<z,) Y(z) = 

Y(z) = 1(z3< 2 < z4) Y(z) = p(z4< 2) 

where 

The retrieval state is given by the solution of (15) with m f O  which satisfies both the 
condition that the dorresponding fixed point of the dynamics (1) be stable and a 
certain requirement concerning the degree of the pattern retrieval in associative 
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memory. The requirement will be specified by g= 1 with the tolerance overlap g being 
defined by [25] 

This quantity measures quality of retrieval better than the order-parameter overlap m 
in the case of network.-with transfer functions which differ much from the sigmoidal 
ones. In other words, it should be understood that pattern retrieval with a general 
type of transfer function will require the definition of the overlap as given by (17). 

We show in figure 2 the plot of m satisfying g= 1 against a (thick line) which was 
obtained by numerically solving (15) under the condition -(20/1-p)<r<O for 
0 =0.4 and p=O.2. Note that here the standard type of retrieval solution with m+O 
and r#O is allowed to exist only for a certain interval of a unlike the " n o n  case of 
the Hoplield model with sigmoidal transfer functions. We denote its upper and Iower 
bounds by Cc and ao, respectively, although the existence of the latter is not always 
ensured but depends on the values of 0 and p. 

If the retrieval solutions obtained turn out stable attractors of (1) for a up to 
o! = e,, the 8, should coincide with the storage capacity of the network. However, it is 
not the case for the network with the parameters depicted, as is shown in the same 
figure which also displays some n(a) points obtained from the results of successful 
retrieval in numerical simulations with N=200-300 for various values of a. Whereas 
the data points obtained are seen to fit well the theoretical m(a) curve, few data points 
showing successful retrieval were collected for a>  ~ 0 . 3 8 ,  because starting with any 
initial conditions almost failed to make the network state settle into the expected 
retrieval state with g=l .  This implies that the theoretically obtained retrieval 
solutions with a ranging from ir, down to a certain value, 0.38 in this case, lose their 

0.35 
0.0 0.1 0.2 0.3 0.4 0.5 

a 

FigureZ. Plots of the order-parameter overlap m against the loading rate a obtained by 
the SCSNA (solid lines) and by numerical simulations (square) with N= ZOO-3W for 8=0.4 
and p=O.2. The thick line which has the end points at a=ao and a = &  represents the 
standard type of retrieval states with rfO given by the solutions to (15). The thin line 
representing the relation m=O+( l+p)dZ  gives the super retrieval states with r=O+ 
(see text). It terminates at the end point (a=ao)  of the thick line. Squares denote the 
results for successful retrieval with g= 1, showing excellent agreement with the result of 
the SCSNA. The storage capacity a, is determined to be the upper bound for a yielding 
successful retrieval. 
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Figure3. Time evolution of the tolerance overlap g for several initial conditions for 
8=0 .4 ,p=-02 ,anda=0 .3 .  ~ ~ 

stability. The occurrence of instability in general includes that of oscillatory instahi- 
lity, since the present network has no Lyapunov function. Then the storage capacity 
a, has to be given by the value of a corresponding to the stability limit. One has in 
general the storage capacity lower than Ec ( ~ ~ < - 6 ~ ) .  Note however that the value of a, 
itself still gets enhanced relative to the commonly known value -0.14 of the,Hopfield 
model with sigmoidal transfer functions. 

We present in figure 3. the time.course of the tolerance overlap g in the retrieval 
process obtained in numerical simulations with N=300 for 8=0.4, p=-0.2 and 
a=0.3. It can be seen that the network with the given parameters, if started with an 
initial condition ensuring an appropriately large overlap, settles into the retrieval state 
specified with g=l  after some time. This implies that the present system works 
properly as an associative memory. 

Let us turn to the problem of the appearance of the lower bound a. in figure 2. The 
critical point an comes into existence in such a way that with loading rate a 
approaching a, from above, r tends to 0, and below a, no standard type of retrieval 
solution can exist. Recall that u2=ar represents variance of the noise in the local 
fields. Interestingly, what is happening to the system below an is the disappearance of 
noise in the local fields of neurons. The clue to this singular phenomenon caused by 
the anomalous behaviour of r-O+ of the standard type of retrieval solution can be 
obtained by examining (15) and (16) in the limit r+O+ . 

We first note that in this limit I U1-t m and hence r+ - a. Since in addition we 
know by solving numerically (15) that while zl, z2, z3+ - m , z4 remains finite, it 
follows 

In figure 2 the straight line m = 0 + (1 + p)a12 is also drawn (thin line) showing that the 
curve representing the standard type of retrieval solution m of (15) just disappears 
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upon crossing it at a= a,. Note then that the critical value a. turns out to satisfy the 
equations which are obtained by taking the limit r+O+ on (15) together with (18): 

e-=i .( T+ (1 -pZ)N[O, z4] = (1 -py-  I 2n 
(19) 

where 

Regarding the behaviours of the networks for a==ao, we will have no other choice 
than admitting that m=O+(l+p)a /2  holds true with r=O+, because the r#O 
solution of the SCSNA cannot exist any longer. The validity of the proposition has been 
confirmed by numerical simulations on the networks of an appropriately large number 
of neurons. Indeed, the results of numerical simulations depicted in figure 2 display 
excellent agreement with the claimed relation between m and a below a,, which lends 
credit to the establishment of r=O+ . 

The disappearance of noise in the local fields below a, can be more directly 
confirmed by observing the local field distribution P(h),  which is expected to take a 
non-Gaussian form due to the presence of the output proportional term TY in the 
renormalized local field. Figures 4(a) and 4(b), respectively, show the profiles of P(h) 
obtained by numerical simulations on the networks with 0=0.4 and a=0.2 for 
N=3W in the cases of r=O+ state (p=O.2) and r#O state (p=0.5). Focusing one's 
attention only to either half of the P(h) because of the expected symmetry P(h)= 
P(-h), one sees a pair of peaks separated from each other by a gap which is not so 
clearly visible in figure 4(b). The gap in the local field distribution can easily be 
understood, based on the SCSNA, to  arise in connection with solving (154 for Y(z)  

h 

2.0 

1.0 

0.0 
-1.0 -0.6 -0.2 0.2 0.6 1.0 

h 
Figure4. Local field distributions P(h) of neurons in the retrieval states obtained by 
numerical simulations with N=3W for 8=0.4 and a=0.2. (a) p=O.2 (super retrieval 
state); (b) p=0.5. The non-Gaussian distributions (h>O) are seen to exhibit a pair of 
peaks separated from each other by the gap whose size is (1-p)lTI according to the 
theory. The value for r is (a) -a= -0.2 and (b) -0.0976. 
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with use of the Maxwell rule: the local fields are forbidden to take their values in the 
intervalof width ( l - p ) l r / ,  O - ( l - p ) / 2  ITl<lhl<O+(l-p)/21Tl. One also notices 
the sharp contrast between the two profiles of P(h) with the same loading rate 
expecialIy in terms of the width of each peak of the distributions: the one for p=O.2, 
indeed, becomes extremely narrowed in accordance with r = O + ,  though it is seen to 
remain finite due probably to finite size effect. The profiles of P(h) obtained by 
numerical simulations even with N =  200-500 for various values of the parameters p, 
0, and a are in good agreement with the theoretical results based on the SCSNA [ZS], 
which are though not shown here. 

The appearance of the gap in the local field distribution showing a clear evidence 
for its non-Gaussian property will differ, in character, from such a gap as inferred by 
the order-parameter equations (15) with T>O for the sigmoidal transfer functions 
with sufficiently high analogue gain, which are considered to exhibit replica 
symmetry-breaking instability leading to possible breakdown oi the self-averaging 
property assumed in the SCSNA. In fact, the problem of the gap for high analogue gain 
with T>O has been discussed recently by Kiihn and Bos in the light of replica 
symmetry breaking [XI. The gap which occurs with r<O in the present network 
having a non-monotonic transfer function and is related to the negative slope of the 
transfer function with 

however, should be free from the matter of replica symmetry breaking because of the 
good agreement with the results of numerical simulations supporting the presence of 
the gap in the local field distribution. 

We refer to the noiseless state with a< a,  as r= 0 + state or super retrieval state to 
distinguish it from the normal retrieval state representing the standard type of 
retrieval state with rZO. The onset of the super retrieval state will be surprising, 
because it can be easily proved that g= 1 exactly follows ensuring memory retrieval 
without errors in spite of the presence of an extensive number of stored pattems with 
the Hebb learning nile. In the vanishing of the width of the local field distribution 
characterizing the new phase, the presence of an output proportional term in the 
renormalized local fields of a neuron, which arises from the so-called renormalization 
procedure of the SCSNA, plays a key role together with a prescription of the Maxwell 
rule appled to the case of non-monotonic transfer functions of a certain type. Indeed, 
the relation m = O + ( l + p ) a / 2  obtained under the limit r+O+ is a direct conse- 
quence of both T+ -a and the occurrence of the discontinuous jump at z=z, of Y(z) 
resulting from the use of the Maxwell rule. Note that in the case of a finite number of 
storedpatterns(p<m)withT=Oandr=O,one hasm=Owhenp<O. Furthermore, 
simply setting T=-a and r=O in (Ija) without using the Maxwell rule only yields 
Ol(1-a) for p<O, apart from the stability problem. For this reason one must 
distinguish between r= 0 and r = 0 + . This makes a sharp contrast with the case of 
stochastic networks with the pseudo-inverse rule where r=O is just a solution to the 
order-parameter equations describing the retrieval states [24]. Furthermore, it is 
noted that in our case setting r=O+ cannot be consistent with all of the three 
equations (15a), (156), and (ljc), the first two of which concern the order-parameter 
overlap m and spin glasss order-parameter q respectively, and can be shown to hold 
[XI. 
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Figures. Phase diagram on thep-aplancfor8=0.4displaying thesuperrctrievalphase 
(O<a<a,) and the enhancement of the storage capacity. The storage capacity a, 
represented by the solid curve with square is given as the upper bound for a ensuring 
successful memory recall in numerical simulations. 

We may say that the phenomenon of the vanishing noise occurs as a result of the 
condensation of the so-called naive noise in the local fields for a below a,,, since does 
not vanish but takes a finite value of -a while noise z vanishes (u=O+). The naive 
noise which is generated by the non-condensed patterns has so far been treated as 
Gaussian noise with mean 0 in a conventional signal-to-noise analysis-type approach 
to the problem of determining the storage capacity. Our present results have revealed 
that such treatment for the naive noise indeed is invalid because of the correlation 
between components of the non-condensed patterns and the output of a neuron in the 
retrieval state. 

The phase diagram on the p a  plane showing the dependence of a,, &, and a, on 
p for fixed 8 (=0.4) is given in figure 5. The storage capacity a, has been determined 
by the numerical simulations as the stability limit of the scsNA-solution and a, by 
solving (19). Note that p = l  represents the Hopfield model with F(u)=sgn(u)  
yielding a,=i(,=0.14. As the parameter p controlling the degree of non- 
monotonicity of the transfer function is decreased, & is seen to tncrease until it attains 
a broad maximum of =0.51. The relation a,=&,, however, holds only down to 
pzO.6  and thereafter a, starts to deviate from due to the occurrence of instability 
of the SCSNA solution. The a, takes its maximum at around p=O and decreases with a 
further decrease in p. Concerning the behaviour of a,, we see a ,  start to increase from 
a,=O at p=0  (=0.4) to get intercepted by the decreasing curve of a.(& as p is 
decreased. The super retrieval phase is then represented by the region below both the 
ac(p) curve (p<=-O.25) and the ao(p) curve (-0.25<p<O.4), where the relation 
m = 8 + (1 + p)a/2 holds. The condition p== 0 for the occurrence of the super retrieval 
phase is likely to be related with the fact that under such condition the network with a 
finite number of patterns (a = 0) yields m = 0. In this connection, it is worth noting 
that the super retrieval phase can exist under the condition 0<1 [25]. 

In conclusion, we have shown that the continuous-time alalogue network with the 
non-monotonic transfer function (3) yields remarkable features of the enhancement of 
the storage capacity and appearance of the super retrieval phase, both of which 
contribute to improving the network performances of associative memory with the 
Hebb learning rule. Those phenomena found here will be generic and be expected for 
a certain class of transfer functions. In fact, using the systematic method of the SCSNA 
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we can show that in most cases networks with non-monotonic transfer functions give 
rise to an enhancement of the storage capacity more or less to the same extent as in 
the present case under no self-coupling condition. Such an enhancement of the 
storage capacity was first noted by Morita et a1 [U] in their study based on numerical 
simulations. We have also studied elsewhere that introduction of an appropriate 
amount of self-couplings can lead to a further enhancement of the storage capacity 
[25]. With regard to the newly discovered phase, i.e. super retrieval phase, now that 
the mechanism underlying the vanishing of noise in the local fields has turned out to 
be closely related with the appearance of jumps in the renormalied output Y(z) 
which arises from use of the Maxwell rule, one can easily expect the novel phase to 
occur for transfer functions with sufficiently steep negative slopes. It should be noted 
that the appearance of jumps in the original transfer function F(u) as in the present 
model is not necessarily required for the onset of the super retrieval phase [25]. 

This work is partially supported by Grant-in-Aid for General Scientific Research 
(02460289) and Grant-in-Aid for Encouragement of Young Scientist (03740205) from 
the Ministry of Education. 
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